

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 175 (2003) 264-271

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Synthesis, characterization and dielectric properties of new unidimensional quaternary tellurites: LaTeNbO₆, La₄Te₆Nb₂O₂₃, and La₄Te₆Ta₂O₂₃

Kang Min Ok, Lei Zhang, and P. Shiv Halasyamani*

Department of Chemistry and Center for Materials Chemistry, University of Houston, 136 Fleming Building, 4800 Calhoun Blvd., Houston, TX 77204-5003, USA

Received 4 March 2003; received in revised form 29 April 2003; accepted 7 May 2003

Abstract

Three new tellurites, LaTeNbO₆ and La₄Te₆ M_2O_{23} (M = Nb or Ta) have been synthesized, as bulk phase powders and crystals, by using La₂O₃, Nb₂O₅ (or Ta₂O₅), and TeO₂ as reagents. The structures of LaTeNbO₆ and La₄Te₆Ta₂O₂₃ were determined by single crystal X-ray diffraction. LaTeNbO₆ consists of one-dimensional corner-linked chains of NbO₆ octahedra that are connected by TeO₃ polyhedra. La₄Te₆ M_2O_{23} (M = Nb or Ta) is composed of corner-linked chains of MO_6 octahedra that are also connected by TeO₄ and two TeO₃ polyhedra. In all of the reported materials, Te⁴⁺ is in an asymmetric coordination environment attributable to its stereo-active lone-pair. Infrared, thermogravimetric, and dielectric analyses are also presented. Crystallographic information: LaTeNbO₆, triclinic, space group P - 1, a = 6.7842(6) Å, b = 7.4473(6) Å, c = 10.7519(9) Å, $\alpha = 79.6490(10)^{\circ}$, $\beta = 76.920(2)^{\circ}$, $\gamma = 89.923(2)^{\circ}$, Z = 4; La₄Te₆Ta₂O₂₃, monoclinic, space group C2/c, a = 23.4676(17) Å, b = 12.1291(9) Å, c = 7.6416(6) Å, $\beta = 101.2580(10)^{\circ}$, Z = 4.

© 2003 Elsevier Inc. All rights reserved.

Keywords: Oxides; Tellurites; One-dimensional; Dielectric properties; X-ray diffraction

1. Introduction

Mixed-metal tellurites (Te⁴⁺) have a rich structural chemistry attributable to their stereo-active lone-pair as well as their variable coordination environments. The stereo-active lone-pair is thought to be the result of a second-order Jahn-Teller (SOJT) distortion [1-5]. The SOJT distortion reduces the energy of the highest occupied (HOMO) s-orbital by mixing with the lowest unoccupied (LUMO) *p*-orbital, i.e. s-p mixing, resulting in the stereo-active lone-pair. Structurally, the lone-pair creates an asymmetric coordination environment for Te^{4+} . With respect to oxide bonding, Te^{4+} may be three-, four-, or five-coordinate. In connectivity terms, the coordination can range from fully bonding, e.g. $[\text{TeO}_{4/2}]^0$ and $[\text{TeO}_{3/2}]^+$, to completely terminal, e.g. $[TeO_{3/1}]^{2-}$ [6,7]. We have been interested in combining the asymmetric environment and variable coordination of Te^{4+} with other SOJT distorted cations, e.g. d^0

transition metals (Ti⁴⁺, Nb⁵⁺, or W⁶⁺). In doing so, our aim is to not only create new materials, but also to synthesize non-centrosymmetric materials in order to investigate their non-linear optical properties [8]. In this paper, we report the syntheses, structures and dielectric behavior of three new mixed-metal tellurites, LaTeNbO₆ and La₄Te₆ M_2O_{23} (M = Nb or Ta).

2. Experimental

2.1. Reagents

TeO₂ (Aldrich, 99%), Nb₂O₅ (Aldrich, 99.99%), and Ta₂O₅ (Alfa Aesar, 99%) were used as received. La₂O₃ (Aldrich, 99.9%) was dried overnight at 1000°C before being used.

2.2. Syntheses

2.2.1. Bulk phase powder

For LaTeNbO₆, 0.724 g $(2.22 \times 10^{-3} \text{ mol})$ of La₂O₃, 0.591 g $(2.22 \times 10^{-3} \text{ mol})$ of Nb₂O₅, and 0.709 g

^{*}Corresponding author. Fax: +713-743-2787.

E-mail address: psh@uh.edu (P.S. Halasyamani).

 $(4.44\times 10^{-3}\,mol)$ of TeO_2 were combined. For La4- $Te_6Nb_2O_{23}$, 1.417 g (4.35 × 10⁻³ mol) of La₂O₃, 0.578 g $(2.17 \times 10^{-3} \text{ mol})$ of Nb₂O₅, and 2.082 g $(13.05 \times 10^{-3} \text{ mol})$ mol) of TeO₂ were combined. For La₄Te₆Ta₂O₂₃, 1.303 g (4.00×10^{-3} mol) of La₂O₃, 0.884 g ($2.00 \times$ 10^{-3} mol) of Ta₂O₅, and 1.915 g (12.00 × 10⁻³ mol) of TeO₂ were combined. The respective mixtures were thoroughly ground with an agate mortar and pestle and pressed into pellets. The pellets were introduced into quartz tubes that were subsequently evacuated and sealed. For LaTeNbO₆, the tube was heated to 850°C for 60 h and cooled to room temperature with two intermittent re-grindings. La₄Te₆ M_2O_{23} (M = Nb or Ta) was heated to 800°C for 48 h and cooled to room temperature with one intermediate re-grinding. Powder X-ray diffraction patterns on the resultant white powders indicated each material was single phase.

2.2.2. Single crystals

For LaTeNbO₆, 0.421 g $(1.29 \times 10^{-3} \text{ mol})$ of La₂O₃, 0.343 g (1.29 × 10⁻³ mol) of Nb₂O₅, and 1.236 g $(7.74 \times 10^{-3} \text{ mol})$ of TeO₂ were combined. For La₄- $\begin{array}{l} Te_6Nb_2O_{23},\ 0.326\ g\ (1.00\times10^{-3}\ mol)\ of\ La_2O_3,\ 0.133\ g\\ (0.50\times10^{-3}\ mol)\ of\ Nb_2O_5,\ and\ 0.958\ g\ (6.00\times10^{-3}\ mol)\ of\ Nb_2O_5,\ and\ Nb_2O_5,\ an$ 10^{-3} mol) of TeO₂ were combined. For La₄Te₆Ta₂O₂₃, $0.192 \text{ g} (0.59 \times 10^{-3} \text{ mol}) \text{ of } \text{La}_2\text{O}_3, 0.130 \text{ g} (0.29 \times 10^{-3} \text{ mol})$ mol) of Ta₂O₅, and 0.563 g $(3.53 \times 10^{-3} \text{ mol})$ of TeO₂ were combined. Excess TeO₂ was added in order to promote crystal growth. The respective mixtures were thoroughly ground with an agate mortar and pestle and introduced into separate gold tubes that were subsequently sealed. The gold tubes were heated to 900°C for 24 h and then cooled to 500°C at $6^{\circ}Ch^{-1}$ before being quenched to room temperature. Crystals of LaTeNbO₆ (colorless rods) and La₄Te₆ M_2O_{23} (M = Nb or Ta; colorless blocks) were recovered from each gold tube. Crystals of La₄Te₆Ta₂O₂₃ were of much better quality than La₄Te₆Nb₂O₂₃; thus the former were used for single crystal analysis. Powder X-ray diffraction was used to show La4Te6Nb2O23 is iso-structural to La₄Te₆Ta₂O₂₃. Powder X-ray diffraction patterns for each material is in agreement with the generated patterns from the single crystal data (see Supporting Information).

2.3. Crystallographic determination

A colorless rod (approximate size: $0.02 \times 0.02 \times 0.30$ mm) for LaTeNbO₆ and a colorless block (approximate size: $0.10 \times 0.10 \times 0.15$ mm) for La₄Te₆Ta₂O₂₃ were used for single crystal data analyses. Room temperature intensity data were collected on a Siemens SMART diffractometer equipped with a 1 K CCD area detector using graphite monochromated MoKa radiation. A hemisphere of data was collected using a narrow-frame method with scan widths of 0.30° in

omega, and an exposure time of 25 s/frame. The first 50 frames were re-measured at the end of the data collection to monitor instrument and crystal stability. The maximum correction applied to the intensities was <1%. The data were integrated using the Siemens SAINT program [9], with the intensities corrected for Lorentz, polarization, air absorption, and absorption attributable to the variation in the path length through the detector faceplate. Psi-scans were used for the absorption correction on the hemisphere of data. The data were solved and refined using SHELXS-97 and SHELXL-97, respectively [10,11]. All of the atoms were refined with anisotropic thermal parameters and converged for $I > 2\sigma(I)$. All calculations were performed using the WinGX-98 crystallographic software package [12]. Crystallographic data, atomic coordinates and thermal parameters, and selected bond distances for LaTeNbO₆ and La₄Te₆Ta₂O₂₃ are given in Tables 1–4.

Table 1
Crystallographic data for LaTeNbO ₆ and La ₄ Te ₆ Ta ₂ O ₂₃

	LaTeNbO ₆	La ₄ Te ₆ Ta ₂ O ₂₃
Formula weight	455.42	2051.14
Temperature (K)	293.0(2)	293.0(2)
Wavelength (Å)	0.71073	0.71073
Crystal system, space group	Triclinic, P-1	Monoclinic,
	(No. 2)	C2/c (No. 15)
Unit cell dimensions a = 23.4676(17) Å	$a = 6.7842(6) \text{\AA}$	
	b = 7.4473(6) Å	
b = 12.1291(9) Å	•	
c = 10.7519(9) Å	$c = 7.6416(6) \text{\AA}$	
$\alpha=79.6490(10)^\circ$	$\alpha = 90^{\circ}$	
	$\beta = 76.920(2)^{\circ}$	
$\beta = 101.2580(10)^{\circ}$		
° 2	$\gamma = 89.923(2)^{\circ}$	$\gamma = 90^{\circ}$
Volume (Å ³), Z	520.08(8), 4	2133.3(3), 4
$\rho_{\rm calc}({\rm g/cm^3})$	5.82	6.39
θ Range (deg)	2.78 - 27.98	1.77 - 28.03
Absorption coeff. (mm^{-1})	15.76	26.196
Crystal size (mm)		
$0.02 \times 0.02 \times 0.30$		
$0.10 \times 0.10 \times 0.15$		
Refl. collected/unique	3206/2230	6424/2424
	[R(int)=0.0682]	[R(nit) = 0.0690]
Absorption correction	ψ -scan	ψ -scan
Refinement method	Full-matrix	Full-matrix
	least-squares on F^2	least-squares on F^2
Goodness-of-fit on F^2	1.073	1.036
Final $R^{a,b}$ indices $[I > 2\sigma(I)]$	R = 0.0432,	R = 0.0353,
	$R_{\rm w} = 0.1168$	$R_{\rm w} = 0.0951$
R indices (all data)	R = 0.0487,	R = 0.0427,
× /	$R_{\rm w} = 0.1205$	$R_{\rm w} = 0.0984$
Extinction coefficient	0.0080(6)	0.00024(2)

 $^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

^b $R_{\rm w} = [\sum w(F_{\rm o}^2 - F_{\rm c}^2)^2 / \sum w(F_{\rm o}^2)^2]^{1/2}.$

In examining the thermal ellipsoid for Te(1) in $La_4Te_6Ta_2O_{23}$, we determined that this atom could be split over two sites, Te(1*a*) and Te(1*b*). In doing so, fractional occupancies of 0.52(4) and 0.48(4) were refined, respectively. During the course of the refinement for La₄Te₆Ta₂O₂₃, we also determined that fractional occupancy must occur in some of the oxygen atoms in order to retain charge balance. The possibility of Te⁶⁺ was considered, but quickly discarded owing to the asymmetric coordination environment of the tellurium

Table 2 Atomic coordinates for LaTeNbO₆

Atom	X	у	Ζ	$U_{\rm eq}$ (Å ²)
La(1)	0.3313(1)	0.2845(1)	0.8435(1)	0.009(1)
La(2)	0.7598(1)	0.8620(1)	0.4961(1)	0.011(1)
Te(1)	0.3299(1)	0.7982(1)	0.8008(1)	0.009(1)
Te(2)	0.7380(1)	0.3717(1)	0.4975(1)	0.010(1)
Nb(1)	0.8272(1)	0.0417(1)	0.8002(1)	0.008(1)
Nb(2)	0.8176(1)	0.5464(1)	0.8021(1)	0.009(1)
O(1)	0.5075(9)	0.9809(8)	0.8186(7)	0.016(1)
O(2)	0.1823(10)	0.0541(8)	0.0352(7)	0.016(1)
O(3)	0.8601(9)	0.8163(8)	0.7184(6)	0.014(1)
O(4)	0.8928(9)	0.8881(8)	0.2574(6)	0.011(1)
O(5)	0.8481(9)	0.1522(8)	0.5744(6)	0.013(1)
O(6)	0.7123(9)	0.2870(7)	0.8210(6)	0.013(1)
O(7)	0.1797(9)	0.4570(8)	0.4105(6)	0.014(1)
O(8)	0.5016(9)	0.6009(8)	0.7882(7)	0.016(1)
O(9)	0.0861(10)	0.5010(9)	0.7787(7)	0.020(2)
O(10)	0.2444(11)	0.4336(9)	0.0306(7)	0.022(2)
O(11)	0.3906(10)	0.8685(8)	0.6179(6)	0.015(1)
O(12)	0.5330(9)	0.6758(8)	0.4052(6)	0.011(1)

 $U_{\rm eq}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table 3 Atomic coordinates for La₄Te₄Ta₂O₂₂

Atomic coordinates for La ₄ Te ₆ Ta ₂ O ₂₃					
Atom	X	у	Ζ	$U_{ m eq}({ m \AA}^2)^{ m a}$	Occupancy
La(1)	0.17003(2)	0.24541(4)	0.08777(7)	0.00999(16)	1.0
La(2)	0.10110(3)	0.49929(4)	-0.21403(8)	0.01268(17)	1.0
Te(1a)	0.41733(12)	0.5116(5)	0.170(2)	0.0156(15)	0.52(4)
Te(1b)	0.41589(13)	0.4963(7)	0.235(2)	0.0165(16)	0.48(4)
Te(2)	-0.00094(3)	0.29317(6)	-0.00807(9)	0.01681(19)	1.0
Te(3)	0.17902(2)	0.75614(5)	0.09635(8)	0.00895(17)	1.0
Ta(1)	0.252685(17)	0.49457(3)	0.12154(5)	0.00954(15)	1.0
O(1)	0.2708(3)	0.3437(5)	0.1037(9)	0.0134(14)	1.0
O(2)	0.1720(3)	0.4673(6)	0.0775(9)	0.0100(13)	1.0
O(3)	0.3422(3)	0.5545(6)	0.2025(10)	0.0215(16)	1.0
O(4)	0.2585(4)	0.5205(7)	-0.1195(11)	0.026(2)	1.0
O(5)	0.2479(3)	0.6698(6)	0.1586(9)	0.0134(14)	1.0
O(6)	0.4059(3)	0.3785(6)	0.0673(10)	0.0212(16)	1.0
O(7)	0.4165(4)	0.5907(9)	-0.0561(13)	0.019(3)	0.715(16)
O(8)	0.0737(3)	0.3526(6)	0.0551(10)	0.0177(15)	1.0
O(9)	-0.0443(3)	0.4159(6)	0.0246(11)	0.0230(17)	1.0
O(10)	0.0000	0.2361(11)	0.2500	0.018(4)	0.77(3)
O(11)	0.0000	0.3769(11)	-0.2500	0.017(4)	0.80(3)
O(12)	0.1412(3)	0.6823(6)	0.2582(9)	0.0126(14)	1.0
O(13)	0.1503(3)	0.6818(6)	-0.1194(9)	0.0139(14)	1.0

^a $U_{\rm eq}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

cations, as well as the bond valence results (see Results and Discussion). Although a host of partial occupancy models are possible, only one makes structural sense. It seemed very unlikely that Ta^{5+} would at any time be five-coordinate; thus all of the oxygen atoms bonded to

Table 4 Selected bond distances (Å) for $LaTeNbO_6$ and $La_4Te_6Ta_2O_{23}$

LaTeNbO ₆		$La_4Te_6Ta_2O_{23}$	
Nb(1)-O(1)	2.173(6)	Ta(1)–O(1)	1.890(6)
Nb(1)–O(2)	1.772(7)	Ta(1)–O(2)	1.886(6)
Nb(1)–O(3)	2.019(6)	Ta(1)–O(3)	2.195(8)
Nb(1)-O(4)	1.903(6)	Ta(1)–O(4)	1.899(8)
Nb(1)-O(5)	2.391(7)	Ta(1)–O(4)	1.966(8)
Nb(1)-O(6)	2.015(5)	Ta(1)–O(5)	2.150(7)
Nb(2)-O(3)	2.042(6)	Te(1a)–O(3)	1.901(9)
Nb(2)–O(6)	2.020(6)	Te(1a)-O(6)	1.792(8)
Nb(2)–O(7)	2.287(7)	Te(1a)-O(7)	1.97(2)
Nb(2)–O(8)	2.215(6)	Te(1a)-O(7)'	2.44(2)
Nb(2)-O(9)	1.821(6)		
Nb(2)-O(10)	1.785(7)	Te(1b)-O(3)	1.839(8)
		Te(1b)-O(6)	1.904(10)
Te(1)-O(1)	1.882(6)	Te(1b)–O(7)'	1.91(2)
Te(1)-O(8)	1.879(6)	Te(1b)-O(7)	2.51(3)
Te(1)-O(11)	1.891(7)		
		Te(2)–O(8)	1.869(9)
Te(2)–O(5)	1.924(6)	Te(2)–O(9)	1.847(9)
Te(2)-O(7)	1.904(6)	Te(2)-O(10)	2.085(5)
Te(2)–O(12)	1.897(6)	Te(2)-O(11)	2.118(8)
		Te(3)–O(5)	1.906(8)
		Te(3)-O(12)	1.885(8)
		Te(3)-O(13)	1.885(8)

Ta⁵⁺ must remain fully occupied. Of the remaining Te^{4+} cations, Te(1a)/Te(1b) and Te(2) are both fourcoordinate whereas Te(3) is three-coordinate. It is also unlikely that Te⁴⁺ would be two-coordinate; thus all of the oxygen atoms around Te(3) must also be fully occupied. For Te(1a) (Te(1b)), the bond distances to O(7) and its symmetry equivalent are 1.97(2)Å, (1.91(2) Å) and 2.44(2) Å, (2.51(3) Å), respectively. The latter distance is substantially longer than what is observed normally for Te⁴⁺-O bonds, indicating some partial occupancy in O(7). Similarly, for Te(2), the Te(2)-O(10) and Te(2)-O(11) bond distances are longer than typical Te⁴⁺-O contacts, suggesting partial occupancy in O(10) and O(11). Thus the most reasonable and structurally sensible model is to refine the occupancies of O(7), O(10), and O(11). In doing so, partial occupancies of 0.715(16), 0.77(3), and 0.80(3) were refined for O(7), O(10), and O(11), respectively.

2.4. Powder diffraction

The X-ray powder diffraction data were collected on a Scintag XDS2000 diffractometer at room temperature (CuK α radiation, $\theta-\theta$ mode, flat plate geometry) in the 2θ range 3–110° with a step size of 0.02°, and a step time of 10 s. For La₄Te₆Nb₂O₂₃, the unit cell was determined by using the program ERACEL [13]. The unit cell, d_{obs} , d_{calc} , I_{obs} , and I_{calc} are given in Table 5.

2.5. Infrared spectroscopy

Infrared spectra were recorded on a Matteson FTIR 5000 spectrometer in the 400–4000 cm⁻¹ range, with the sample pressed between two KBr pellets. The infrared spectra of all three materials revealed M–O, Te–O, M–O–M, Te–O–Te, and M–O–Te vibrations (M = Nb or Ta). The infrared vibrations and assignments are given in Table 6. The assignments are consistent with those previously reported [14–16].

2.6. Thermogravimetric analysis

Thermogravimetric analyses were carried out on a TGA 2950 Thermogravimetric Analyzer (TA Instruments). The samples were contained within platinum crucibles and heated at a rate of 10° C min⁻¹ from room temperature to 900°C in nitrogen. No weight losses or phase changes were observed up to 900°C for all three materials.

2.7. Dielectric characterization

The dielectric constant (κ) and quality factor ($Q = 1/\tan \delta$) measurements were performed using a HP4192A impedance analyzer operating at 1 MHz. Polycrystalline LaTeNbO₆, La₄Te₆Nb₂O₂₃, and

Table 5	
---------	--

Powder X-ray diffraction data for La₄Te₆Nb₂O₂₃ [refined unit cell^a a = 23.407(4) Å, b = 12.055(2) Å, c = 7.714(1) Å, $\alpha = 90^{\circ}$, $\beta = 101.59(1)^{\circ}$, $\gamma = 90^{\circ}$; space group C2/c (No. 15)]

h	k	l	$d_{\rm obs}$	d_{calc}	$I_{\rm obs}$	$I_{\rm calc}{}^{\rm a}$
2	0	0	11.470	11.465	2	3
-1	1	1	6.458	6.459	4	5
4	0	0	5.734	5.732	1	1
2	2	0	5.336	5.335	1	1
4	2	0	4.156	4.154	4	4
1	3	0	3.959	3.958	4	4
6	0	0	3.821	3.822	1	1
-1	1	2	3.671	3.672	5	5
-1	3	1	3.556	3.557	8	7
1	1	2	3.461	3.461	3	2
-2	2	2	3.229	3.229	45	45
6	2	0	3.227	3.228	100	100
0	2	2	3.202	3.201	27	28
7	1	0	3.162	3.161	4	4
-7	1	1	3.140	3.141	9	9
3	3	1	3.108	3.108	1	1
3	1	2	3.043	3.043	5	4
0	4	0	3.013	3.014	39	39
-6	0	2	3.005	3.006	17	17
2	2	2	2.957	2.956	4	4
2	4	0	2.915	2.915	3	3
4	0	2	2.899	2.898	25	24
6	2	1	2.801	2.801	1	1
-3	3	2	2.720	2.720	4	3
5	3	1	2.687	2.686	1	1
4	4	0	2.668	2.668	1	1
8	2	0	2.589	2.588	3	3
7	3	0	2.539	2.539	3	4
-3	1	3	2.495	2.494	1	1
6	0	2	2.451	2.452	2	2
1	5	0	2.397	2.398	1	2
0	4	2	2.356	2.356	1	1
8	2	1	2.322	2.323	1	1
10	0	0	2.294	2.293	1	1
-4	4	2	2.282	2.282	1	1
2	4	2	2.253	2.253	4	4
5	3	2	2.221	2.221	1	1

Calculated using the atomic coordinates for ${\rm La}_4 {\rm Te}_6 {\rm Ta}_2 {\rm O}_{23}$ but substituting niobium for tantalum.

^aThe unit cell was determined by using the program ERACEL [13].

lable 6
Infrared vibrations (cm ⁻¹) for LaTeNbO ₆ and La ₄ Te ₆ M_2 O ₂₃ ($M =$ Nb
or Ta)

	M–O	Те-О	M–O– M	М-О-Те	Te-O-Te
LaTeNbO ₆	917	794 665	750 538	613	472
$La_4Te_6Nb_2O_{23}$	909	781 759 653	723 688 540	610	422
$La_4Te_6Ta_2O_{23}$	912	784 761 653	725 690 532	613	428

La₄Te₆Ta₂O₂₃ were pressed into 1.2 cm diameter and 0.15 cm thick pellets and sintered at 900°C for 10 h. The pellets had a density 90% of theoretical. A conducting silver paste was applied to the pellet surfaces for electrodes and cured at 400°C. The temperature dependence of the dielectric constants (TCK) was measured, between -20° C and 100° C, by placing the pellets in a Linkam THMSE600 hot stage.

3. Results and discussion

LaTeNbO₆ has a unidimensional crystal structure consisting of parallel chains of corner-shared NbO₆ octahedra. Each NbO₆ octahedron is also linked to a TeO₃ group (see Fig. 1). The Te^{4+} cation is in an asymmetric coordination environment attributable to its stereo-active lone-pair. The parallel chains run along the *b*-axis and are separated by the La³⁺ cations. The Nb–O and Te-O bond distances range from 1.772(7) to 2.391(7) Å and 1.879(6) to 1.924(6) Å, respectively. In connectivity terms, LaNbTeO₆ can be formulated as consisting of $\{[TeO_{2/2}O_{1/1}]^0 [NbO_{4/2}O_{2/1}]^{3-}\}^{3-}$ anionic chains, with charge balance retained by the La³⁺ cations. Bond valence calculations [17,18] resulted in values of 4.75 and 4.93 for Nb^{5+} and 3.61 and 3.86 for Te⁴⁺. Interestingly, we were unable to synthesize LaTeTaO₆ using the same synthetic method as LaTe NbO₆. Although several attempts were made, all efforts to synthesize LaTeTaO₆ produced La₄Te₆Ta₂O₂₃ and a mixture of reagents. This indicates that if LaTeTaO₆ exists at all, the material is extremely unstable with respect to $La_4Te_6Ta_2O_{23}$.

 $La_4Te_6M_2O_{23}$ (M=Nb or Ta) also has a unidimensional crystal structure, consisting of different types of chains that run parallel to the c-axis (see Fig. 2). One chain consists of corner-linked TaO₆ octahedra. Each TaO₆ octahedron shares additional corners with TeO₃ and TeO₄ groups (see Fig. 3a). Similar to LaTeNbO₆, the Te⁴⁺ cations in La₄Te₆ M_2O_{23} (M = Nb or Ta) are also in asymmetric coordination environments attributable to their stereo-active lone-pairs. The TeO₃ polyhedra are separated from each other, but the TeO_4 groups are connected through an oxygen atom (see Fig. 3a). However, this oxygen atom, O(7), is partially occupied (0.715(16)); thus the TeO₄ 'chain' is broken at random intervals. In other words, TeO₃ groups are observed. The other chain is similar to the aforementioned TeO₄ unit. This chain also consists of fourcoordinate Te⁴⁺ that share corners through oxygen atoms (see Fig. 3b). However, similar to O(7), these oxygen atoms, O(10) and O(11), are also partially occupied (0.77(3) and 0.80(3), respectively) indicating that this 'chain' is also broken, again resulting in TeO₃ groups. These types of broken chains have been observed previously in Ga₂Te₄O₁₁ [19]. Both sets of 'chains' run parallel to the *c*-axis and are separated by La^{3+} cations. In addition, the lone-pair on the Te⁴⁺ in the two broken chains point toward each other resulting in the formation of small cavities throughout the structure (see Fig. 2). Bond distances for Ta-O and Te-O range from 1.886(8) to 2.151(9) Å and 1.847(9) to 2.221(12) Å, respectively. Bond valence calculations

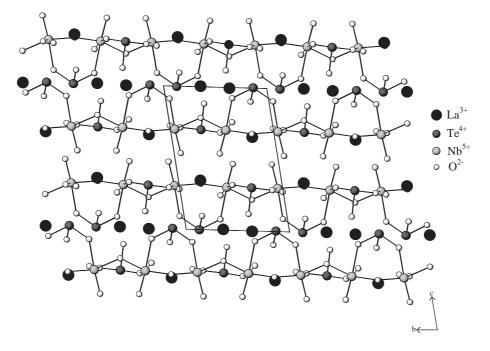


Fig. 1. Ball-and-stick diagram of LaTeNbO₆ in the b-c plane.

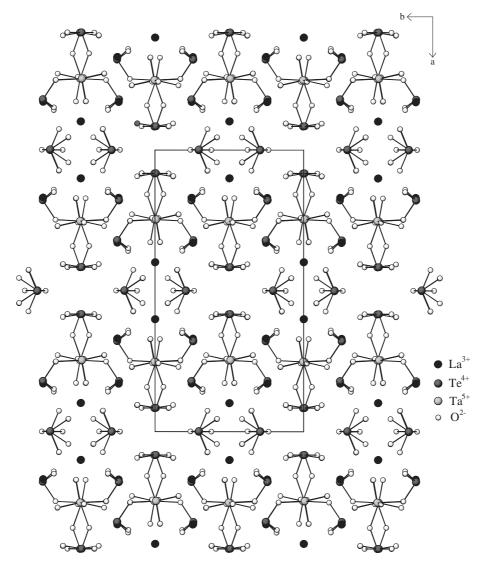


Fig. 2. Ball-and-stick diagram of $La_4Te_6Ta_2O_{23}$ in the a-b plane.

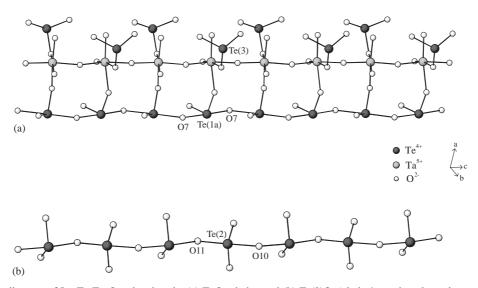


Fig. 3. Ball-and-stick diagram of $La_4Te_6Ta_2O_{23}$ showing the (a) TaO_6 chains and (b) $Te(2)O_4$ 'chains' running along the *c*-axis. In (a), for clarity, only Te(1a) is shown. Note that O(7), O(10), and O(11) are partially occupied (see text).

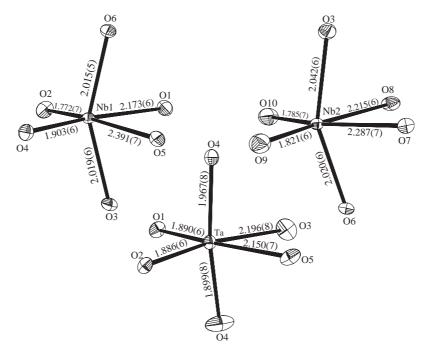


Fig. 4. ORTEP (50% probability ellipsoids) for the Nb⁵⁺ and Ta⁵⁺ octahedra in LaTeNbO₆ and La₄Te₆Ta2O₂₃. Note the intra-octahedral distortion toward the edge (local [110] direction) of each octahedron.

[17,18] resulted in values of 5.14 for Ta^{5+} and 3.78, 3.97, and 4.19 for Te^{4+} .

Although LaTeNbO₆ and La₄Te₆ M_2 O₂₃ (M = Nb or Ta) are structurally very different, the local (distorted) coordination environments of the cations are very similar. In all three materials, the M^{5+} (M = Nb or Ta) cation is in a distorted octahedral coordination environment bonded to six oxygen atoms. This cationic displacement can be attributed to a SOJT distortion. Interestingly, all of the intra-octahedral distortions are toward an edge, along the local [110] direction, and results in two 'short', two 'normal', and two 'long' bonds (see Fig. 4). In addition, for all the octahedra the two shortest M^{5+} -O bonds are terminal, whereas the two longest bonds are connected to a Te^{4+} cation. The remaining M^{5+} -O bonds (the 'normal' bonds) bridge to another M^{5+} cation. The Te⁴⁺ cations are in distorted three- or four-coordinate environments, attributable to their stereo-active lone-pair. Finally, for LaTeNbO₆ and La₄Te₆ M_2O_{23} (M = Nb or Ta), the La³⁺ cations are in eight- or nine-fold coordination, respectively.

3.1. Dielectric measurements

Since the reported materials contain polarizable cations, i.e. Te^{4+} , Nb^{5+} and Ta^{5+} , we felt it would be interesting to investigate their bulk dielectric properties. The dielectric constant for all three materials are very similar, with $\kappa = 12.9$, 17.0, and 15.9 for LaTeNbO₆, La₄Te₆Nb₂O₂₃, and La₄Te₆Ta₂O₂₃, respectively. With

Table 7

Dielectric constant (κ), quality factor (Q), and temperature coefficient
of the dielectric constant (TCK) for LaTeNbO ₆ and La ₄ Te ₆ M ₂ O ₂₃
(M = Nb or Ta) at 1 MHz and 20°C

	к	$Q(1/\tan \delta)$	TCK (ppm/°C)
LaTeNbO ₆	12.89	>100	+103
La ₄ Te ₆ Nb ₂ O ₂₃	17.01	36.8	+1730
$La_4Te_6Ta_2O_{23}$	15.91	36.6	+1890

 κ , dielectric constant; $Q = 1/\tan \delta$; TCK = $[(\kappa_{100} - \kappa_{-20})/\kappa_{40}]/120$.

the quality factor $(Q = 1/\tan \delta)$ and temperature dependence of the dielectric constant (TCK), it is not surprising that the values for La₄Te₆Nb₂O₂₃ and La₄Te₆Ta₂O₂₃ are very similar (Q = 36.8 and 36.6; TCK = +1730 and +1890 ppm/°C, respectively), attributable to the materials being iso-structural (see Table 7). Interestingly, Q and TCK for LaTeNbO₆ are superior to La₄Te₆ M_2O_{23} (M = Nb or Ta), possibly owing to the lack of oxygen vacancies in the former material. In addition, variable frequency measurements on La₄Te₆ M_2O_{23} (M = Nb or Ta) at 10 kHz, 100 kHz, and 1 MHz between 400°C and 600°C revealed a peak in the dielectric constant, indicating dielectric relaxation phenomena. Additional measurements are underway in order to ascertain the origin of this dielectric behavior.

Acknowledgments

We thank the Robert A. Welch Foundation for support. We also acknowledge Dr. Xiqu Wang for crystallographic assistance. This work was also supported by the NSF-Career Program through DMR-0092054 and an acknowledgment is made to the donors of The Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. P.S.H. is a Beckman Young Investigator.

Supporting information available

Powder X-ray diffraction patterns (calculated and experimental) are available (PDF). Further details of the crystal structure investigation(s) can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany, (fax: (49) 7247-808-666; e-mail: crysdata@fiz.karlsruhe.de) on quoting the depository number CSD-413007 and CSD-413008.

References

- [1] U. Opik, M.H.L. Pryce, Proc. Roy. Soc. (London) A 238 (1957) 425.
- [2] R.F.W. Bader, Mol. Phys. 3 (1960) 137.
- [3] R.F.W. Bader, Can. J. Chem. 40 (1962) 1164.
- [4] R.G. Pearson, J. Mol. Struct. (Theochem) 103 (1983) 25.

- [5] R.A. Wheeler, M.-H. Whangbo, T. Hughbanks, R. Hoffmann, J.K. Burdett, T.A. Albright, J. Am. Chem. Soc. 108 (1986) 2222.
- [6] M. Tatsumisago, T. Minami, Y. Kowada, H. Adachi, Phys. Chem. Glasses 35 (1994) 89.
- [7] C.R. Becker, S.L. Tagg, J.C. Huffman, J.W. Zwanziger, Inorg. Chem. 36 (1997) 5559.
- [8] J. Goodey, K.M. Ok, J. Broussard, C. Hofmann, F.V. Escobedo, P.S. Halasyamani, J. Solid State Chem., 2003, in press.
- [9] SAINT, Version 4.05, Siemens Analytical X-ray Instruments, Inc., Madison, WI, 1995.
- [10] G.M. Sheldrick, SHELXS-97, Program for the Automatic Solution of Crystal Structures, University of Goettingen, Goettingen, Germany, 1997.
- [11] G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Goettingen, Goettingen, Germany, 1997.
- [12] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
- [13] J. Laugier, A. Filhol, ERACEL, Program for the Refinement of Cell Parameters, 1978.
- [14] D.A. Judd, Q. Chen, C.F. Campana, J. Am. Chem. Soc. 119 (1997) 5461.
- [15] G.-S. Kim, H. Zeng, D. VanDerveer, C.L. Hill, Angew. Chem. Int. Ed. 38 (1999) 3205.
- [16] K.M. Ok, P.S. Halasyamani, Chem. Mater. 13 (2001) 4278.
- [17] I.D. Brown, D. Altermatt, Acta Crystallogr. B 41 (1985) 244.
- [18] N.E. Brese, M. O'Keeffe, Acta Crystallogr. B 47 (1991) 192.
- [19] M. Dutreilh, P. Thomas, J.C. Champarnaud-Mesjard, B. Frit, Solid State Sci. 3 (2001) 423.